Particle size distribution by LASER diffraction spectrometry: application to cementitious powders
نویسندگان
چکیده
Particle size distribution (PSD) measurements are now routinely employed to characterize cement powders. A variety of techniques are available for this purpose. However, at present, an industry standard does not exist for PSD analysis, nor do uniform methods exist for sample preparation. Two international round-robin tests sponsored by ASTM committee C01.25.01 revealed high variability in reported PSDs, even among participants using similar instruments. The round-robin studies also identified LASER diffraction spectrometry (LDS) as the most common technique used by the cement community for routine determination of PSD. Therefore, studies were conducted to identify and examine the factors that significantly influence the determination of the PSD in cement powder by LDS. Potentially, the most significant influence on variability of PSD measurement is the state of dispersion of the powder prior to analysis by LDS; dispersion efficiency will depend on factors such as solids concentration, choice of dispersion medium, and the application of chemical and/or mechanical de-agglomeration methods. Another potentially significant source of error originates from the conversion of the measured optical spectrum to a PSD, a process that requires input of optical constants (real and imaginary components of the refractive index) of the solid phase which in cement is a multi-phase particle. The current work was undertaken with the objective of improving the precision, and therefore the degree of confidence, associated with the LDS technique in its application to cement characterization, and to assess the overall measurement precision of LDS under controlled conditions. We report relevant experimental data gathered in the course of these studies, and briefly summarize each set of results pertaining to a specific influence or parameter. Cement is composed of particles of finely interground clinker and gypsum. Knowledge of the separate PSD of the two components is critical for the prediction of cement properties. A novel technique to extract the PSD of gypsum from the total cement PSD by matching optical constants will be presented.
منابع مشابه
La0.6Sr0.4Co0.2Fe0.8O3 perovskite cathode for Intermediate Temperature Solid Oxide Fuel Cells: A comparative study
In this study the characteristics of two different kinds of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) powders, one in-house synthesized powder by a co-precipitation method and another one purchased from Fuel Cell Materials Co. (FCM Co., USA), were compared. The co-precipitated powder was prepared by using ammonium carbonate as precipitant with a NH4+/NO3- molar ratio of 2 and calcination at 1000C for 1 h....
متن کاملComparison of particle sizing techniques in the case of inhalation dry powders.
The objectives of this work were (i) to validate electrical zone sensing and laser diffraction for the analysis of primary particle size in the case of inhalation dry powders and (ii) to study the influence of the aggregation state of the powder on the sizing techniques. Free-flowing dry powders were prepared by spray-drying with a combination of albumin, lactose, and dipalmitoylphosphatidylcho...
متن کاملParticle sizing by laser diffraction spectrometry in the anomalous regime.
The application of laser diffraction spectrometry to determine the size distributions of particles in the anomalous diffraction regime, i.e., particles with a refractive-index ratio close to one, has been examined. From a computer simulation, using the Mie theory and the geometrical optics approximation, it could be concluded that for suspensions with a refractive-index ratio near 1, the corres...
متن کاملDrug Nano-Particles Formation by Supercritical Rapid Expansion Method; Operational Condition Effects Investigation
Dissolution pressure and nozzle temperature effects on particle size and distribution were investigated for RESS (Rapid Expansion of Supercritical Solution) process. Supercritical CO2 was used as solvent and Ibuprofen was applied as the model component in all runs. The resulting Ibuprofen nano-particles (about 50 nm in optimized runs) were analyzed by SEM and laser diffraction pa...
متن کاملCation Distribution Tuning of Solution Combusted CoFe2O4 Powders
In this work, the different fuels (citric acid, glycine and urea) were used for solution combustion synthesis of CoFe2O4 powders. X-ray diffraction, Raman spectroscopy, electron microscopy and vibrating sample magnetometry techniques were employed for characterization of phase evolution, cation distribution, microstructure and magnetic properties of the as-combusted CoFe2O4 powders. Single phas...
متن کامل